Membangun Sistem Identifikasi Kematangan Buah Alpukat menggunakan teknologi Pengolahan Citra Digital
DOI:
https://doi.org/10.62523/kalijaga.v1i3.18Keywords:
Avocado, Avocado Fruit Ripeness Detection, CNNAbstract
This research aims to build an avocado fruit ripeness identification system using digital image processing technology, focusing on the Convolutional Neural Network (CNN) method. Avocado, with its high-fat content and rich nutritional value, is a high-value commodity, but determining the correct level of ripeness remains a major challenge in avocado trading. Current ripeness identification methods often rely on visual observation, which is difficult to perform because avocados do not undergo color changes when ripe. Therefore, an automated system that can identify the ripeness level of avocados is needed. This study uses a dataset from Mendeley and applies CNN architecture to classify the ripeness levels of avocados into four categories: raw, semi-ripe, ripe, and overripe. However, the results of model training show challenges in overcoming overfitting and class imbalance. Recommendations for further research include adding regularization techniques such as dropout and expanding data variation with augmentation, as well as increasing samples in minority classes through oversampling.
References
Azrita, M. W., Ahmad, U., & Darmawati, E. (2020). Rancangan Kemasan dengan Indikator Warna untuk Deteksi Tingkat Kematangan Buah Alpukat. Jurnal Keteknikan Pertanian, 7(2), 155–162. https://doi.org/10.19028/jtep.07.2.155-162
Finaka, A. W. (2019). Alpukat, Buah Nikmat Kaya Manfaat. Indonesiabaik. https://indonesiabaik.id/infografis/alpukat-buah-nikmat-kaya-manfaat
Gede Bintang Arya Budaya, I., & Angga Pradipta, G. (2023). Performa Backbone RestNet50 dan MobileNetV2 pada DeeplabV3+ untuk Segmentasi Karakter Komik Lokal. Seminar Nasional Penelitian Dan Pengabdian Kepada Masyarakat CORISINDO, 122–127.
Ifmalinda, I., Andasuryani, A., & Shaufana, L. (2022). IDENTIFIKASI BENTUK BUAH ALPUKAT (Persea americana Mill.) DENGAN ANALISIS CITRA DIGITAL. Jurnal Teknologi Pertanian, 23(3), 215–226. https://doi.org/10.21776/ub.jtp.2022.023.03.5
Mukhofifah, M., & Nurraharjo, E. (2019). Sistem Deteksi Kematangan Buah Alpukat Menggunakan Metode Pengolahan Citra. Jurnal Dinamika Informatika, 11(1), 12–23. https://doi.org/10.35315/informatika.v11i1.8144
Nabila Asryani Sundari, Rita Magladena, & Sofia Saidah. (2022). Klasifikasi Jenis Kulit Wajah Menggunakan Metode Covolutional Neural Network (CNN) Efficientnet-B0. E-Proceeding of Engineering, 8(6), 3180–3187.
Santoso, A., & Ariyanto, G. (2018). Implementasi Deep Learning Berbasis Keras Untuk. Jurnal Emitor, 18(01), 15–21. http://eprints.ums.ac.id/62956/
Wasilwa, L. A., Njuguna, J. K., Okoko, E. N., & Watani, G. W. (2017). Status of Avocado Production in Kenya. Kenya Agricultural Research Institute (KARI), April 2017, 1–6.
Xavier, P., Rodrigues, P., & Silva, C. L. M. (2024). “Hass” Avocado Ripening Photographic Dataset. Mendeley Data, V1. https://doi.org/10.17632/3xd9n945v8.1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Yosa Adytia Pratama
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.